|
楼主 |
发表于 2008-12-16 14:42:45
|
显示全部楼层
11-2-第二节 神经内分泌系统与免疫系统的胚胎发生学、组织结构学联系
一、胚胎学联系
5 I2 T$ E: f( K! S, x! T g$ L! b& O8 N% s, j2 O1 N" S; @ v
出生之后,所观察到的神经内分泌免疫网络之间的种种相互联系,很大程度上源自神经系统、内分泌系统和免疫系统之间在组织胚胎发生学上的相互依存、相互影响。用显微外科技术,对胚胎早期鸡胚进行实验,比如部分性去除大脑,或切除脑垂体,或切除腔上囊(bursa of Fabricius,也称法氏囊)或松果体。结果发现,大脑、垂体和胸腺之间存在着十分密切的联系。部分大脑切除或脑垂体切除后的胚胎,胸腺上皮细胞内的分泌颗粒数量增加,同时,胸腺体积变小,其内的淋巴细胞耗竭。反之,胚胎期切除胸腺,也对日后脑垂体的功能产生重要的影响,尤其是影响垂体中催乳素(prolactin, PRL)和生长激素(growth hormone, GH)分泌细胞的功能。另外,用杂交所产生的鹌鹑-鸡进行实验研究发现,神经嵴对胸腺的器官发生有十分重要的作用。去除脑的神经嵴导致胸腺发育缺陷,甚至完全萎缩,可表现出与临床上所见的DiGeorge综合征相类似的各种疾病特征。, |3 U6 U0 u$ B4 p4 T6 _6 p
' a6 ?$ M* O8 K
二、不同部位中枢神经系统损伤或接受刺激的免疫反应效应
3 Z& Y$ v0 s3 z8 F3 l# R8 x# T2 I. K2 k8 G+ Z( ~ Q9 _
两侧大脑对语言能力、抽象能力和空间想象能力有所分工。右侧大脑半球与负性情感(negative emotions)有关;左侧大脑半球则与正性情感(positive emotions)相关。大脑两侧半球功能的不对称,导致对免疫系统功能影响的不均衡。临床上,常常可以见到左侧大脑梗死病变的患者比右侧大脑梗死病变的患者更容易罹患各种感染性疾病。用小鼠进行实验,分别损坏左或右侧的大脑进行观察,所得到的结论也与上述临床观察相符。左侧大脑半球对免疫系统起刺激的作用;相反,右侧则没有作用,甚至还起到一定的抑制作用。进一步的深入研究还发现,左利手比右利手的人更容易发生自身免疫病。在系统性红斑狼疮(SLE)的动物模型NZB/W小鼠中,也发现了左利爪小鼠明显早于右利爪小鼠出现自身抗体的有趣现象。然而,也有学者认为,上述现象不能完全排除是由于存在着种系遗传的缘故。 1 u, \7 S& g8 ?
1 o8 }' U- K( e7 o8 V
在切除或保留脑垂体的情况下,刺激或破坏下丘脑的不同区域,发现在一定的程度上,下丘脑并不需要通过依赖于垂体激素分泌量的改变,就可直接对免疫系统发生影响。此外,海马区、杏仁区和松果体,均具有调节免疫系统功能状态的作用。 4 r3 t# G, s! \$ @+ U/ j
. w8 \# t, q+ |. ~# @三、淋巴器官的神经支配和/或神经递质与神经肽调节 ( M. }% a: m# C9 l, F$ c$ H
$ a. p" k( q- h0 C# ~2 s; B m 解剖学研究发现,无论一级还是二级淋巴器官均接受自主神经的支配。自主神经随血管同行,进入到淋巴器官的各种组织结构中,与各种淋巴细胞、巨噬细胞甚至是肥大细胞发生密切接触。这些神经纤维能与脑啡肽 (enkephalin )、神经肽Y ( neuropeptide Y, NPY),P物质(substance P, SP)、血管活性肠肽(vasoactive intestinal peptide, VIP)、胆囊收缩素(cholecystokinin, CCK )、神经素(neurotensin, NT)和降钙素基因相关肽(calcitonin gene-related peptide,CGRP)等物质的抗体发生特异性反应。表明神经系统和免疫系统之间存在着相互联系的、最有说服力的依据是,免疫细胞上存在有上述物质的受体。而且,上述物质与相应的受体相结合后,能表现出各自不同的免疫调节效应。此外,在人和啮齿类动物的胸腺细胞中,也发现存在有鸦片肽(opioid peptide)、生长抑素(somatostatin, SS)、蛙皮素(bombesin)、 SP、心房利钠因子(atrial natriuretic factor, ANF)、催产素(oxytocin, OT)、血管加压素(vasopressin, VP)和神经垂体素(neurophysin)等肽类物质。用针对OT和VP的特异性cDNA与胸腺细胞mRNA进行杂交的方法,进一步证实了在胸腺细胞内有表达OT和VP等神经肽类物质的基因存在。
6 |1 q+ Q6 [% ^& x x2 a
, v, U% n1 {6 Z. z8 i, {* ]6 M四、免疫反应的条件反射现象
n2 ?- H" O7 b
- O% n$ E. n3 {9 h4 n/ Z) {# P7 d/ c 行为影响免疫反应,从另一侧面反映出了中枢神经系统与免疫系统之间存在着某种密切联系。每次使用环磷酰胺进行免疫抑制治疗时,饮一定量的溶液比如糖水,经多次反复强化,以后在只喝糖水的情况下,也能表现出一定程序的免疫抑制效应。而且,因免疫抑制而发生常见部位感染所导致的死亡率,与摄入的糖量呈明显的正相关。给已经建立了此种条件反射的动物再次服糖的实验发现:条件反射再服糖组,与条件反射不服糖组或无条件反射服糖组相比较,抗体的生成浓度明显下降。自身免疫病的动物模型,如NZB/W小鼠,在建立了上述免疫抑制的条件反射之后,可在一定程度上推迟自身免疫病症状的出现。此外,免疫反应刺激剂如Poly I : C,也能建立相似的条件反射效应。甚至催眠和暗示也能起到调节免疫和/或炎症反应强度的作用。毫无疑问,以上这些效应的产生,都是通过神经系统起作用的。' Y# I7 E6 a# _4 r, P- h, T
- r+ b9 t& g m$ O五、免疫系统与应激反应6 u7 |, j9 H; Q- _8 I8 g0 v
. p/ K$ n& t$ w
在人类和动物,应激对免疫系统产生不同效应的影响。有关这方面的知识目前已经得到了广泛的研究,总的结论是:应激降低免疫反应水平。但在某些特殊的状态下,也有例外的情况发生,即应激可使免疫反应水平提高。
% Z7 i8 I, v2 {1 M9 {8 P! y0 ~% Q; X1 E- S' @4 g
在不同人群中观察到,急性或慢性应激可降低细胞免疫反应,此时,自然杀伤细胞(NK细胞)的活性明显减弱。比如,学生在紧张考试期间、婚姻发生危机(如分居,离婚)时、家庭经济生活困难、存在工作方面的压力(失业或工作不理想)或睡眠严重不足等诸多情况下,均可使免疫反应在很大程度上受到抑制。在此情况下,长时间、全面地观察应激对免疫反应的作用,结果发现应激对免疫反应的影响表现出双向性作用。即在应激初期的高峰阶段,应激使免疫反应增强;但如果应激持续存在,在随之而来的应激反应的后期,则使免疫反应受到一定程度的抑制。国外观察发现,会计师在规定的时限之前,需要完成各种年底的帐务统计的紧张状态下,对免疫反应的影响即是典型的、如此类型的双向反应。此外,应激对免疫反应各种影响的最终结果,还受到当时情况下当事者的心态是否紧张、抑郁以及当事者处理所面对事务的能力大小等诸多因素影响。临床上,也观察到不少自身免疫病的发生与生活中的应激相关联。例如,常见的内分泌疾病甲状腺功能亢进症——Grave病,被普遍认为是一种与自身免疫紊乱相关的疾病,其发生或复发往往与精神应激有关,但有关这类临床现象目前尚还缺乏前瞻性的、对照性的研究。 . b& X% m8 M& u+ @
$ {+ Y* n) v8 U9 ?& d 在动物,尽管体力和/或精神上的急性或慢性应激,对罹患感染性疾病的易感性、肿瘤生长速度和某些反映免疫反应强弱的参数的影响结果,出现了完全相反的两种结论,但是总的趋势是免疫反应能力减弱。之所以出现不同的免疫反应结果,与应激的类型、强度或持续的时间、应激的急性或慢性发生(某些情况之下,慢性应激能够使动物产生适应性反应)、对应激的预见和处理能力以及动物在所处种群中的社会地位高低等等因素都有一定的关系。然而,动物对应激的反应并非所有的免疫参数均是整齐划一地向同一个方向变化。事实上是在一些参数可能被抑制的同时,另一些则保持不变甚至得到了加强。对应激所得到的不同反应结果,表明神经内分泌与免疫系统之间的相互作用相当复杂。因此,在分析应激对免疫系统的影响作用时,应针对具体情况作具体分析,不可泛泛地下一般化的结论。比如应激时,占整个淋巴细胞总数2%、半衰期仅为30分钟的血液中的外周淋巴细胞的反应,就与有神经支配的中枢淋巴器官中的淋巴细胞的反应截然不同。中枢淋巴器官因有神经支配,应激时能释放不同的神经递质,对中枢淋巴细胞可行复杂的功能调节。有鉴于此,在研究特定应激对免疫系统的影响时,应同时考虑到由于应激所导致的神经递质、神经肽和激素水平所发生的各种变化。不同的应激所产生的神经递质、神经肽和激素的种类会有所差别,其所产生的部位及其作用也各不相同。此外,从理论上来说,生理性的应激反应就能诱导产生不同的神经递质和激素。比如应激时产生糖皮质激素和儿茶酚胺可起抑制免疫反应的作用;同时,也能产生PRL、GH和脑啡肽,则又起到刺激免疫系统的作用。因此,在分析应激反应对免疫系统功能的最终影响结果时,应对上述物质所产生的作用加以综合性考虑。在大多数情况下,不外乎出现两种反应。一是应激反应首先导致免疫抑制物质的释放,抑制免疫反应,随后免疫刺激物质的释放,使被抑制了的免疫反应又恢复到正常状态;二是应激反应先促进免疫刺激物质的释放,使免疫反应增强,以此对抗外界致感染的微生物,随之,促进免疫抑制物质的释放,如糖皮质激素,则又使免疫反应水平调低,以便回复到正常免疫反应状态的基线。具体情况下,究竟出现上述两种情况中的哪一种反应,视应激的类型和当时机体所处的状态而定。
5 a. g% R! D( E, z) C1 L
$ x9 S5 @) O: _) _; D六、中枢神经系统疾病与免疫系统
% s! [* m8 N+ b3 G4 J1 G3 z9 z, n# ]( h* E4 x
揭示神经系统与免疫系统之间相互联系的另一种方法,是对免疫神经性和免疫精神性疾病领域进行深入的研究。大量的临床研究资料,已经强烈地提示在多种神经、精神性疾病的发生和发展过程中,有异常免疫反应的参与。然而,还有许多事实目前仍然不是十分清楚。很难断定某些神经、精神疾病是免疫反应异常的结果还是原因,也无法肯定免疫反应的异常是否与疾病本身所产生的应激反应有关。一些神经、精神性疾病,如抑郁症、精神分裂症和老年性痴呆症(Alzheimer's disease),都存在着一定程度的细胞和/或体液免疫反应的异常。目前认为,至少有一部分神经、精神性疾病是由于自身免疫紊乱所致。反之,包括1型糖尿病(胰岛素依赖性糖尿病,insulin-dependent diabetes mellitus, IDDM)和SLE在内的一些自身免疫病患者,更容易发生抑郁症等神经、精神性疾患。目前认为中枢神经系统在多个方面参与了SLE的发生过程的理由有:①中枢神经系统内可见免疫复合物的沉积;②中枢神经系统内存在抗淋巴细胞抗体,同时能与大脑组织某些种类的抗原发生交叉免疫反应;③某些抗体直接与神经递质以及这些神经递质的受体发生反应。通过对获得性免疫缺陷综合征(AIDS)所致痴呆症的深入研究,发现了免疫反应异常引起神经、精神性疾病的另一种机制。神经递质VIP和艾滋病毒的某种蛋白质(gp120)可共享同一种受体结构,VIP与之结合起刺激性作用,艾滋病毒gp120蛋白与之结合则起抑制性作用。这种受体结构同时存在于淋巴细胞和神经细胞膜上,与细胞的识别功能有关。由此可以看出,至少有一部分神经、精神性疾病的发生,与免疫系统异常有关。综上所述,抑郁症可以看成是神经系统与免疫系统相互作用的一个常见的典型病例。此外,患者的年龄、性别以及是否住院,都能改变机体免疫反应参数。这说明了神经内分泌环境和年龄也能对免疫系统产生一定的影响。 ( g5 U- S- v5 m2 H" ^$ l+ o' B
( a) P1 @5 M3 E& ]# o# ~. W
七、中枢神经递质、精神药物与神经免疫调节
2 d( I$ R+ J0 B1 M( | P/ H, P
, g/ I+ d% { @/ B6 B; w* b 中枢神经递质、神经肽或精神性药物可对免疫反应进行药理学调节的事实,进一步强化了中枢神经系统与免疫系统之间存在着相互作用的概念。由于淋巴器官有神经支配,淋巴细胞是儿茶酚胺、5-羟色胺和乙酰胆碱等神经递质作用的靶细胞,因此,不难理解神经、精神药物可通过调节神经递质的释放,从而具有改变机体免疫反应状态的作用。到目前为止,有关神经、精神药物改变免疫反应水平方面的研究文章较少。仅存不多的研究结果有时甚至还出现相互矛盾的现象。有关氯丙嗪和氟哌啶醇等抗多巴胺受体药物对免疫反应影响的研究有较多的报道。左旋多巴作为多巴胺的前体物,是临床上常用的抗帕金森病(Parkinson's disease)的药物,表现出一定的免疫抑制效应。临床上广泛应用的抗焦虑药苯二氮卓类,通过中枢神经和外周的作用机制,依其所用的剂量不同,对免疫反应起刺激或抑制的效应。研究发现,各种免疫细胞细胞膜上有高水平的苯二氮卓类药物受体的表达。这类药物在体内、外均可起到调节巨噬细胞各种功能的作用。如丙咪嗪等抗抑郁作用的药物,锂制剂等抗焦虑药物,四氢大麻、鸦片、可卡因及酒精等精神调节药物和苯妥英钠等抗惊厥药物,都能对免疫反应产生影响。在体内,神经、精神类药物还可以通过作用于下丘脑-垂体轴,调节PRL和 GH的分泌,从而发挥其免疫调节效应。 |
|